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ABSTRACT Previous research in Europe and North America suggested grouse are susceptible to collision
with infrastructure, and anecdotal observation suggested greater sage-grouse (Centrocercus urophasianus) fence
collision in breeding habitats may be prevalent. However, no previous research systematically studied greater
sage-grouse fence collision in any portion of their range. We used data from probability-based sampling of
fences in greater sage-grouse breeding habitats of southern Idaho, USA, to model factors associated with
collision at microsite and broad spatial scales. Site-scale modeling suggested collision may be influenced by
technical attributes of fences, with collisions common at fence segments absent wooden fence posts and with
segment widths >4 m. Broad-scale modeling suggested relative probability of collision was influenced by
region, a terrain ruggedness index (TRI), and fence density per square km. Conditional on those factors,
collision counts were also influenced by distance to nearest active sage-grouse lek. Our models provide a
conceptual framework for prioritizing sage-grouse breeding habitats for collision mitigation such as fence
marking or moving, and suggest mitigation in breeding habitats should start in areas with moderate-high
fence densities (>1 km/km2) within 2 km of active leks. However, TRI attenuated other covariate effects,
and mean TRI/km2 >10 m nearly eliminated sage-grouse collision. Thus, our data suggested mitigation
should focus on sites with flat to gently rolling terrain. Moreover, site-scale modeling suggested constructing
fences with larger and more conspicuous wooden fence posts and segment widths<4 mmay reduce collision.
� 2012 The Wildlife Society.

KEY WORDS avian collision, Centrocercus urophasianus, fence management, greater sage-grouse, Idaho, infrastructure
collision, modeling collision risk.

Collision with infrastructure is widespread and common for
European grouse (Catt et al. 1994, Bevanger 1995, Baines
and Summers 1997). Collision with fences and power lines
caused mortality for a variety of grouse species, including
capercaillie (Tetrao urogallus), black grouse (Tetrao tetrix), red
grouse (Lagopus lagopus scoticus), and ptarmigan (Lagopus
spp.; Bevanger 1990, Baines and Summers 1997, Bevanger
and Brøseth 2000, Baines and Andrew 2003). Despite wide-
spread collision, population level consequences of collision
are not understood in most areas. However, capercaillie fence
collision likely contributed to population declines in Scotland
(Moss et al. 2000, Moss 2001), and tetraonid collision
mortality may approach harvest in some areas (Bevanger
1995).
Limited research also documented collision mortality for

North American tetraonids. Wolfe et al. (2007) studied

mortality of lesser prairie-chickens (Tympanuchus pallidicinc-
tus) and reported 39.8% ofmortality inOklahomawas caused
by fence collision. Patten et al. (2005) concluded fragmen-
tation caused by fences, power lines, and roads in Oklahoma
resulted in greater mortality rates for female lesser prairie-
chickens in Oklahoma than in New Mexico. Additionally,
33% of mortality for juvenile radio-marked greater sage-
grouse (Centrocercus urophasianus; hereafter sage-grouse) at
an Idaho site was because of power-line collisions (Beck et al.
2006).
In a review of bird–infrastructure interactions, Bevanger

(1994) provided a conceptual framework for understanding
avian–infrastructure collision by grouping factors influencing
collision into 4 categories: biological, topographic, meteoro-
logical, and technical. Examples of biological factors include
morphology (Bevanger 1998, Janss 2000), vision and
visual perception (Martin and Shaw 2010, Martin 2011),
activity and movement patterns (Avery et al. 1978, Malcom
1982), space use (Baines and Summers 1997, Rollan et al.
2010), bird densities (Anderson 1978, Baines and Andrew
2003, Bevanger and Brøseth 2004), and structure and height
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of local vegetation (Bevanger 1990, Catt et al. 1994).
Topographic features related to collision include geomorphic
forms that influence flight corridors (Cooper and Day 1998),
and sloping terrain and ridges hypothesized to affect flight
altitude (Bevanger 1990, Rollan et al. 2010). Meteorological
conditions can also affect collision, including fog, precipita-
tion, and wind and weather conditions (Bevanger 1994,
Brown and Drewien 1995, Savereno et al. 1996).
Technical features related to infrastructure design and con-
struction influenced power-line collision (Bevanger 1994,
Bevanger and Brøseth 2004), and infrastructure density
has been hypothesized to affect collision (Wolfe et al. 2007).
Concerns over sage-grouse have highlighted the lack of

empirical data on collision frequency and grouse in North
America. The spatial extent of fences and other structures
increased dramatically in sagebrush habitats over the last 50
years, and impacts on sage-grouse have been hypothesized
(Braun 1998, Connelly et al. 2000, Johnson et al. 2011,
Knick et al. 2011). Previous studies reported sage-grouse
collision with fences near lekking grounds (Scott 1942, Flake
et al. 2010), but no work systematically studied fence colli-
sion and its contributing factors. Moreover, previous avian-
collision research often focused on high risk areas, and many
studies provided temporally intensive surveys over spatially
restricted sites with limited application to other sites.
Thus, we have little information on what broad-scale factors
make an area high risk for most species. Moreover, few
studies systematically studied collision over large geographic
areas or addressed collision at multiple spatial scales, limiting
our understanding of collision risk across the landscape.
Therefore, we studied sage-grouse fence collision in breeding
areas across southern Idaho, USA, andmodeled relationships
between sage-grouse fence collision and biological, topo-
graphic, and technical features at multiple scales. We did
not consider meteorological effects on collision because we
did not have resources to measure fine scale changes in
weather conditions at each site. Moreover, 1 research priority
was to identify site and landscape features related to collision
to aide managers in prioritizing areas for fence-collision
mitigation, thus site- and time-specific weather effects pro-
vide little information toward this objective.

STUDY AREA

We conducted fence collision surveys in sage-grouse breed-
ing areas (2009: n ¼ 16; 2010: n ¼ 14) across 4 regions of
southern Idaho (Stevens 2011). Sage-grouse exhibit a lek
mating strategy, and each breeding area represented 1 lek
route, defined as a group of leks in close spatial proximity
believed to represent part or all of a single breeding popula-
tion and adjacent sagebrush-grass habitats (Connelly et al.
2003). In 2009, we sampled fences at 2 sites in the East
Jarbidge region, 4 sites in the northern Magic Valley region,
4 sites in the Big Desert region, and 6 sites in the Upper
Snake region of southern Idaho (Stevens 2011). In 2010, we
eliminated 1 site each in the northern Magic Valley and Big
Desert regions to sample more intensively at remaining sites.
Elevations on study sites ranged from approximately 1,450 to
2,000 m, and habitat types were variable and included stands

of big (Artemisia tridentata), little (A. arbuscula), black
(A. nova), three-tip (A. tripartita), and mixed sagebrush
types, as well as grasslands, pasture, and previously burned
areas with sparse vegetation.

METHODS

Fence Collision Surveys
We used a stratified cluster sampling design to survey fences
in sage-grouse breeding areas (Stevens 2011). We treated lek
routes as strata in sampling, and selected areas for inclusion
based on accessibility and breeding bird use. We used a
Geographic Information System (GIS; ArcMap 9.3,
Environmental Systems Research Institute, Inc., Redlands,
CA) to buffer each known and active lek by 1.5 km, overlay
the United States Bureau of Land Management’s pasture
boundary layer (our surrogate for fence), and overlay a
1 � 1-km spatial grid at each site. We used 1 � 1-km
grid cells as sampling units (i.e., clusters), and randomly
selected a stratified cluster sample from cells intersecting
the lek buffer and pasture boundary layers. We searched
fences for collision evidence in the form of carcasses, feather
piles, and feather tufts on the barbed wire using 1–2 observers
(1 on each side of the fence, or 1 searcher sampling each side
in turn). Individual observers walked approximately 1–3 m
from each side of the fence during surveys, and we sampled
each side of the fence independently. We also located fence
collisions opportunistically while traversing study sites
(Stevens 2011).We counted collisions during fence sampling
with no knowledge of fate of the individual collision victims.
Therefore, our counts are number of collisions present at the
time of sampling, and not of collision mortalities, as we had
no way to assess crippling bias caused by individual birds
flying into fences and dying at a later time or in a different
area (Bevanger 1999). Moreover, no data currently exist on
the proportion of sage-grouse collisions that ultimately result
in mortality. We sampled all fences within randomly selected
clusters during the sage-grouse breeding season in 2009
and 2010 (Mar–May; 2009: n ¼ 60; 2010: n ¼ 80), and
recorded the number of collisions detected per square
kilometer.

Characterizing Site-Scale Fence Collision Attributes
We measured biological, topographic, and technical charac-
teristics at sage-grouse fence-collision locations. We mea-
sured height of closest shrubs not intersecting the fence plane
(i.e., lateral shrub height) and distances to the closest non-
intersecting shrubs lateral to the fence. We measured shrub
canopy cover along 10-m transects oriented in the cardinal
directions (Canfield 1941), and measured height of closest
shrubs growing directly along the fence (i.e., longitudinal
shrub height intersecting the fence plane) within 5 m of the
collision site in both directions. We recorded maximum lek
count (number of birds per lek) and distance to the nearest
known lek for each site in the GIS using annual lek count
data provided by Idaho Department of Fish and Game
(IDFG; Jenni and Hartzler 1978, Connelly et al. 2003).
We used only counts from leks where �1 male was counted
displaying in 2009–2010, and deleted all leks with zero
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counts in both years and all historical leks with unknown
status.
We recorded technical attributes of fences at each collision

site, including fence height, fence type, and distance between
fence posts for each segment. We recorded types of posts
bounding fence collision segments (i.e., wooden or steel t-
post) later from pictures recorded at each site. We calculated
differences between fence and vegetation height both lat-
erally and longitudinally, and recorded topographic data
including slope across and along the fence (measured over
20 m centered on the collision site), and recorded aspect
using a digital elevation model (DEM) in the GIS.
We selected random fence points on study areas to assess

significance of site-scale features recorded at collision loca-
tions. We randomly generated 1 spatial location for each
collision found on each study area using ArcMap.We did not
pair random fence points with collision points. We generated
random fence points over the entire sampling frame at each
site, not just in randomly selected 1 � 1 km sampling units.
We did not specifically address spatial autocorrelation in site-
scale data; however, statistical classification methods de-
scribed below can show increased predictive accuracy with
spatially correlated data (Marmion et al. 2009). Data col-
lected at random points were identical to fence collision
locations.

Characterizing Broad-Scale Fence Collision Attributes

We evaluated the influence of broad-scale characteristics on
observed collision frequency. We used each sampled cluster
as the unit of analyses, where each square km had an observed
collision count. We measured biological, topographic, and
technical variables over each sampled square km. We col-
lected vegetation and topography attributes in the GIS using
30-m raster grid data. We measured topographic heteroge-
neity using the terrain ruggedness index (TRI; Riley et al.
1999), calculated from United States Geological Survey
30-m DEMs for each region (www.seamless.usgs.gov,
accessed 24 Sep 2010). The TRI for each 30-m pixel is
calculated as the square root of the sum of squared differences
in elevation from the given pixel and the 8 surrounding pixels
(Riley et al. 1999). We calculated mean TRI for each sam-
pled square km using ArcMap. Lastly, we measured fence
length per square km using digitized sampled fences in the
GIS.
We measured vegetation characteristics of each sampled

square km in the GIS using 30-m raster data obtained from
the national Landfire database (www.landfire.gov, accessed
24 Sep 2010). We measured proportional coverage of sage-
brush cover types, vegetation height categories, and shrub
canopy cover categories over each sampled site using the
Landfire Veg Type, Veg Height, and Existing Veg Cover
datasets, respectively. Numerous studies at multiple spatial
scales found sage-grouse habitat use during the nesting
season was influenced by sagebrush presence, canopy cover,
and shrub height (Connelly et al. 2000, Aldridge and
Brigham 2002, Holloran and Anderson 2005, Doherty
et al. 2010). Moreover, grouse–infrastructure collision stud-
ies suggested collision may be related to vegetation height

characteristics (Bevanger 1990, Catt et al. 1994). Therefore,
we reclassified Landfire cover type values into big sagebrush,
and low sagebrush cover types, vegetation height values into
0–0.5 m, 0.5–1.0 m, and >1 m height classes, and shrub
canopy cover values into 10–20%, 20–30%, 30–40%, and 40–
50% cover values. We did not use any other Landfire cover
type, vegetation height, or canopy cover categories in our
analyses. Landfire vegetation data used in this analysis were
produced at the 30-m pixel resolution; however, the dataset
was intended for landscape-scale analyses. We did not
ground truth vegetation classifications produced by the
Landfire dataset, thus the thematic accuracy of broad-scale
vegetation data was unknown and could have varied by site.
We collected lek distribution and count data using annual

lek survey and location data provided by IDFG (Jenni and
Hartzler 1978, Connelly et al. 2003). We calculated distance
to nearest lek, and number of known and active leks within
2 km of the centroid of each sampled cluster using ArcMap.
We also recorded maximum count at the closest lek, and
summed the maximum counts of all leks within 2 km of the
centroid for each sampled cluster.

Statistical Methods

Site-scale analyses.—We used non-parametric multivariate
classification methods to classify random and collision points
based on site-scale attributes. No previous research addressed
site-scale attributes of fence collision locations in sagebrush
steppe. Therefore, this analysis was somewhat exploratory,
and we used multivariate methods known to explore patterns
in the data for site-scale analyses. We also suspected inter-
actions among variables were possible when discriminating
random and collision fence points. For example, the influ-
ence of technical attributes on classification may depend on a
fence’s proximity to nearest active lek. Lastly, missing covar-
iate observations (e.g., fence post type; n ¼ 15 missing val-
ues) required us to use analytical methods capable of using
data with missing observations. Therefore, we used classifi-
cation and regression trees (CART; Breiman et al. 1984,
De’ath and Fabricius 2000) to discriminate random and
collision points. We built CART models using the rpart
package in the R statistical computing language (R Core
Development Team 2006), and we maximized between
group differences at each split by minimizing the Gini index.
We estimated predictive accuracy of CART models using
10-fold cross-validation, and selected optimal tree size using
the 1 standard error rule (De’ath and Fabricius 2000). We
replicated this process 1,000 times and selected the modal
tree size as the final model (De’ath and Fabricius 2000).
Because CART can have lower predictive success than

other classification methods, we also used random forest
algorithms to classify random and collision fence points using
site-scale data (Breiman 2001, Cutler et al. 2007, Kampichler
et al. 2010). Random forest classification fits multiple clas-
sification trees using bootstrapped samples of the original
data, where observations not randomly selected in boot-
strapped samples are referred to as out-of-bag (OOB) obser-
vations. Prediction success is estimated by running OOB
observations through each generated classification tree,
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where classification is determined by the majority vote over
all generated trees (Cutler et al. 2007). Moreover, OOB
observations are used to assess relative importance of indi-
vidual variables by randomly permuting covariate values and
evaluating the effects on model predictive success (Cutler
et al. 2007). We used 10,000 iterations of the randomForest
package (Liaw and Wiener 2002) in the R statistical com-
puting language (R Core Development Team 2006), and
we constructed CART and random forest models using 16
site-scale covariates (Appendix A, available online at
www.onlinelibrary.wiley.com). Lastly, we only used oppor-
tunistically located collision data for site-scale analyses, and
did not use collision data found outside randomly selected
sampling units for broad-scale analyses.
Broad-scale analyses.—We modeled probability of sage-

grouse collision presence per square km with logistic regres-
sion using the known fate model and logit link function in
Program MARK (White and Burnham 1999). We used an
information-theoretic framework to rank and compare mod-
els using Akaike’s Information Criterion corrected for small
samples sizes (AICc) and normalized Akaike model weights
(wi; Burnham and Anderson 2002). Because the known fate
model assumes perfect detection of individuals, known fate
survival estimation using only 1 time interval is identical to
estimating success probability from a binomial-likelihood
model (i.e., probability given event occurred). Thus when
used with 1 time interval and the logit-link function, the
known fate model can be used for logistic regression, with
results identical to those obtained using standard statistical
software. Because we only sampled many sites once per year,
and located very few collisions during subsequent sampling
occasions on sites sampled >1 time per year, we only used
data from the first sampling occasion for broad-scale
analyses.
We constructed logistic regression models using 17 cova-

riates hypothesized to influence collision a priori, all of
which were hypothesized based on avian collision or sage-
grouse research (Appendix A). We grouped sample units by
region, with sites from East Jarbidge and northern Magic
Valley in the Magic Valley region, and Upper Snake and Big
Desert as stand-alone regions.We arcsine-square-root trans-
formed all proportional vegetation coverage covariate data
and tested for correlation between covariates using correla-
tion t-tests. We did not include significantly correlated
(P < 0.05) covariates together in the same model
(Appendix B, available online at www.onlinelibrary.wiley.-
com). We used a 2-stage modeling process to select a final
group of candidate models because of the large number of
covariate combinations. We first constructed models using
individual covariates divided into 3 groups: vegetation, lek
distribution and count, and all other remaining covariates
(i.e., region, year, TRI, and fence length; Appendix C,
available online at www.onlinelibrary.wiley.com). We then
used combinations of covariates from the top models from
each group (i.e., DAICc < 2) to construct a final suite of 23
models (Appendix C).
We evaluated goodness-of-fit, discrimination ability, and

classification success for the top logistic model. We used the

Hosmer and Lemeshow test to assess the null hypothesis that
the top model fit the data (Hosmer and Lemeshow 2000).
We used area under the Receiver Operating Characteristic
(ROC) curve to evaluate discrimination ability of the top
model (Hosmer and Lemeshow 2000). We conducted good-
ness-of-fit testing and estimated ROC curves using SAS
Version 9.2 (SAS Corporation, Cary, NC).We calculated an
optimum prediction threshold for the top model as the
intersection point for sensitivity and specificity curves, jointly
minimizing both types of prediction error (Hosmer and
Lemeshow 2000). We used the optimum prediction thresh-
old to construct classification tables and estimate classifica-
tion success in the R statistical computing language (R Core
Development Team 2006).
We summed collision data over each sampled square km to

evaluate influence of broad-scale covariates on expected col-
lision counts. We conducted count-based modeling in addi-
tion to logistic regression analyses because relative abundance
of collisions provides more information for managers than
presence–absence alone. We corrected collision counts for
undetected collisions using the intercept-only logistic regres-
sion model from detectability trial experiments, where each
observed collision represented 1/0.54 corrected collisions,
and 0.54 was the detection probability (Stevens et al.
2011). Assuming constant detection is an oversimplification
of the detection process, but is currently standard procedure
for avian-collision studies (e.g., Smallwood 2007). Since
count based modeling requires integer-valued random var-
iables, we summed corrected counts at each sample unit and
rounded counts to the nearest whole number. Because of
abundant zero counts in the dataset we used zero-inflated
Poisson regression (ZIP) to model corrected collision counts
(Lambert 1992, Welsh et al. 1996, Martin et al. 2005). The
ZIP models are a type of generalized linear model that
facilitate modeling expected counts and sources of zero
inflation simultaneously as a function of covariates. We
compared ZIP models using information-theoretic methods
(Burnham and Anderson 2002), and fit models using the pscl
package and zeroinfl function in R (R Core Development
Team 2006, Zeileis et al. 2008). Covariates used in ZIP
modeling were identical to those used in logistic regression
(Appendix A), and we used the top logistic model to explic-
itly model the ZIP binomial mixture probabilities (i.e.,
probability of observed count coming from point mass at
zero or Poisson distribution). We used the same 2-stage
modeling process previously described for logistic regression
analysis for ZIP modeling, which resulted in comparison of
21 models in the final model suite (Appendix D, available
online at www.onlinelibrary.wiley.com).
We evaluated goodness-of-fit and prediction success for

the top ZIP model with parametric bootstrap and cross-
validation procedures (Efron and Tibshirani 1994). We used
1,000 parametric bootstrap samples of the Pearson x2 statis-
tic to test the null hypothesis that the model fit the data. We
used leave-1-out cross-validation to estimate prediction suc-
cess, and calculated root-mean-squared error for each
model to describe average error between observed and
cross-validation predicted collision counts. We conducted
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all bootstrap and cross-validation analyses in R (R Core
Development Team 2006).

RESULTS

Site-Scale Analyses
We sampled 129.5 km of fence in 140 1 � 1-km clusters
across southern Idaho during spring of 2009 and 2010. We
detected 86 (2009: n ¼ 48; 2010: n ¼ 38) sage-grouse fence
collisions, including 28 collisions recorded on 60 sites in
2009 and 30 collisions at 80 sites in 2010, and 28 opportu-
nistically located collisions (2009: n ¼ 20; 2010: n ¼ 8). We
collected site-scale data at 172 locations (collision: n ¼ 86;
random: n ¼ 86). Our CART analyses resulted in an opti-
mal model size of 1 split (n ¼ 574), suggesting fence point
type was influenced by presence of wooden fence posts. This
model classified 67 points as random (28.4% error rate) with
�1 wooden post present, and 105 points as collisions (36.2%
error rate) with no wooden posts. Distance between
fence posts was the best surrogate split for wooden post
presence (78.5% agreement in predictions). Distance be-
tween posts predicted collisions with values >3.94 m, and
random sites for distances <3.94 m, and observed distance
between post measurements averaged 3.77 m (SD ¼
1.41 m; range ¼ 1.24–9.78 m). Mean prediction success
for 1-split models with 10-fold cross-validation was
63.6%. Random forest modeling increased prediction success
slightly, with an OOB prediction success of 67.4% (collision:
72.1% success; random: 62.8% success). Variable importance
plots suggested wooden post presence, distance between
posts, and distance to lek (x ¼ 1,248 m; SD ¼ 675 m;
range ¼ 86–3,841 m) were most important for discriminat-
ing collision and random points, and permuting these cova-
riates in OOB data resulted in mean accuracy decreases of
7.2%, 4.5%, and 3.6%, respectively (Fig. 1).

Broad-Scale Analyses
We sampled 140 1 � 1-km clusters during spring of 2009
and 2010, however, 17 clusters had no fences. Therefore, all
broad-scale analyses used 123 observations. Logistic regres-
sion suggested collision presence was influenced by region,
TRI, and fence length per square km (DAICc ¼ 0;
wi ¼ 0.349; Table 1). We also found weak evidence for
the influence of proportional coverage of vegetation
>1.0 m tall (DAICc ¼ 1.509; wi ¼ 0.164; Table 1). The
top model suggested relative collision probability was less
in theMagic Valley region (b ¼ �2.88; 95%CI ¼ �4.96 to
�0.79; Fig. 2), as compared to the Big Desert (b ¼ 1.73;
95% CI ¼ 0.18 to 3.28; Fig. 2) and Upper Snake regions
(b ¼ 2.15; 95% CI ¼ 0.78 to 3.53; Fig. 2). Moreover, the
top model suggested collision decreased with increasing TRI
(b ¼ �0.33; 95% CI ¼ �0.65 to �0.01; Fig. 2), and in-
creased with fence length per square km (b ¼ 1.10; 95%
CI ¼ 0.09 to 2.12; Fig. 2). Observed TRI and fence length
per square km averaged 4.3 m (n ¼ 123; SD ¼ 3.8 m;
range ¼ 1.2–23.6 m) and 1.05 km (n ¼ 123; SD ¼
0.56 km; range ¼ 0.02–2.84 km), respectively. The second
best model suggested increasing cover of vegetation >1.0 m
tall increased collision (b ¼ 0.67; 95% CI ¼ �0.92 to 2.26);

however, this parameter was estimated imprecisely and its
confidence interval overlapped zero. Goodness-of-fit testing
failed to reject the null hypothesis that the top model fit the
data (P ¼ 0.83; x28 ¼ 4.26), and area under the ROC curve
was 0.82, suggesting excellent ability to discriminate between
areas with and without sage-grouse collisions (Hosmer and
Lemeshow 2000). Jointly maximizing sensitivity (0.75) and
specificity (0.77) resulted in an optimum prediction thresh-
old of 0.32 for the top model (i.e., P � 0.32 predicts event
occurrence), and overall classification success of 0.76 sug-
gested reasonable predictive accuracy.
We constructed ZIP models with the binomial mixture

probability modeled as a function of region, TRI, and fence
length per square km. The influence of distance to lek on
collision count was most supported by the data (DAICc ¼ 0;
wi ¼ 0.181; Table 2). The top model suggested a decrease
in collision count with increasing distance to lek (b ¼
�0.0006; 95% CI ¼ �0.0008 to �0.0003; Fig. 3).
Observed values of distance to nearest lek from the centroid
of each sampled cluster averaged 1,367 m (n ¼ 123;
SD ¼ 546 m; range ¼ 158–2,704 m). We found weak evi-
dence for sagebrush canopy cover and fence length in addi-
tion to distance to lek (DAICc < 2; Table 2). However,
additional cover and fence length terms were all estimated

Figure 1. Site-scale random forest variable importance plot for factors dis-
criminating sage-grouse collision fence points and random fence points as a
function of covariates measured on southern Idaho rangelands during spring
of 2009 and 2010. We used 10,000 replications of the random forest algo-
rithm to rank variable importance based on the normalized difference in
classification accuracy for out-of-bag predictions when the variable was
included as measured, and the accuracy for out-of-bag predictions when
the variable was randomly permuted (Cutler et al. 2007). Covariates used
were: presence of wooden fence posts (WP), distance between fence posts
(DBP), distance to nearest sage-grouse lek (D2L), height difference between
the fence and the closest lateral shrub (HDFCS), longitudinal shrub height
(LONGSH), slope, lateral shrub height (LSH), maximum count at closest
lek (LS), height difference between the fence and the closest longitudinal
shrub (HDFCSA), sagebrush canopy cover (SCC), distance to closest shrub
(DCS), sum of lek counts within 2 km (SLC), fence type (FT), number of
leks within 2 km (NL), fence height (FH), and aspect.
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imprecisely with 95% confidence intervals that overlapped
zero. Moreover, cross-validated prediction error was similar
among top models, suggesting weak evidence for parameters
in addition to distance to lek (range ¼ 1.51–1.61; Table 2).
Parametric bootstrap goodness-of-fit testing failed to reject
the null hypothesis that the top model fit the data
(P ¼ 0.83).

DISCUSSION

We found evidence for the influence of several site and
landscape features on sage-grouse fence collision in breeding
areas of southern Idaho. Site-scale analyses suggested
technical factors influenced collision, including fence-post
type and width of fence segments. We hypothesize these

Table 1. Top logistic regression models of sage-grouse collision presence during fence surveys within 1 � 1-km clusters on sage-grouse breeding areas of
southern Idaho, USA, during spring of 2009 and 2010. We ranked models using Akaike’s Information Criteria corrected for small sample sizes (AICc) and
normalized Akaike model weights (wi; Burnham and Anderson, 2002). Covariates were region (region ¼ Magic Valley, Big Desert, Upper Snake), mean
topographic ruggedness (TRI), length of fence (FL), proportion of area covered by vegetation >1 m tall (VH > 1.0), and distance to nearest sage-grouse lek
(D2L).

Model Ka AICc DAICc wi �2LLb

Region þ TRI þ FL 5 109.524 0.000 0.349 99.011
Region þ TRI þ FL þ VH > 1.0 6 111.033 1.509 0.164 98.308
Region þ TRI þ FL þ D2L 6 111.550 2.026 0.127 98.826
Region þ TRI 4 111.915 2.391 0.106 103.576
Region þ TRI þ VH > 1.0 5 113.018 3.494 0.061 102.506

a K ¼ no. of model parameters.
b �2LL ¼ �2 � maximized log-likelihood for model of interest.

Figure 2. Plots of relative sage-grouse collision probability as a function of covariates in the top broad-scale logistic regression model, from sampling fences on
southern Idaho, USA, rangelands during spring of 2009 and 2010. Probability of collision (P) as a function of terrain ruggedness (TRI) and fence length (FL) in
the (a) Magic Valley, (b) Big Desert, and (c) Upper Snake regions.
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relationships are a function of infrastructure visibility to
grouse. That is, fences constructed with larger and more
conspicuous wooden fence posts and with more posts (i.e.,
shorter segment widths) are probably easier for grouse to
see. Many previous collision studies focused on site-scale
parameters, and several studies found significant factors

discriminating random and collision infrastructure points
(Catt et al. 1994, Baines and Summers 1997, Bevanger
and Brøseth 2004). Site-scale vegetation composition
and height appeared to influence fence and power-line colli-
sion for European tetraonids (Catt et al. 1994, Baines
and Summers 1997, Bevanger and Brøseth 2004), as did

Table 2. Top zero-inflated Poisson regression models of sage-grouse collision count during fence surveys on sage-grouse breeding areas of southern Idaho,
USA, during spring of 2009 and 2010. We ranked models using Akaike’s Information Criteria corrected for small sample sizes (AICc) and normalized Akaike
model weights (wi; Burnham andAnderson, 2002). Covariates were distance to nearest sage-grouse lek (D2L), proportional cover of sagebrush canopy cover 10–
20% (SCC1020), length of fence (FL), proportional cover of sagebrush canopy cover 20–30% (SCC1020), proportional cover of sagebrush canopy cover 30–40%
(SCC3040), and proportional cover of sagebrush canopy cover 40–50% (SCC4050).

Modela Kb AICc DAICc wi �2LLc Prediction errord

D2L 7 214.393 0.000 0.181 199.419 1.543
D2L þ SCC1020 8 214.711 0.318 0.154 197.448 1.511
D2L þ FL 8 215.860 1.467 0.087 198.597 1.542
D2L þ SCC4050 8 216.292 1.899 0.070 199.029 1.604
D2L þ SCC3040 8 216.374 1.981 0.067 199.110 1.615
D2L þ SCC2030 8 216.528 2.136 0.062 199.265 1.540

a Model form is log(l) ¼ b0 þ b1 � X1 þ . . . þ bk � Xkjlogit(P) ¼ b0 þ b1 � (Region ¼ Upper Snake) þ b2 � (Region ¼ Big Desert) þ
b3 � TRI þ b4 � FL, where l ¼ expected collision count, P ¼ binomial mixture probability, and TRI ¼ topographic ruggedness index.

b K ¼ no. of model parameters.
c �2LL ¼ �2 � maximized log-likelihood for the model of interest.
d Prediction error ¼ root-mean-squared error calculated via leave-1-out cross-validation. This represents the square root of the average squared difference
between predicted and observed collision counts for each model.

Figure 3. Plots of expected sage-grouse collision count as a function of covariates from the top zero-inflated Poisson regression model, from sampling of fences
on southern Idaho, USA, rangelands during spring of 2009 and 2010. Expected collision count per square km was a function of terrain ruggedness (TRI) and
distance to lek (D2L), with fence length (FL) held at its mean value in the (a) Magic Valley, (b) Big Desert, and (c) Upper Snake regions.
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site-scale topography (Bevanger 1990). In contrast, few
studies identified relationships between technical attributes
of fences and tetraonid collision. However, wind-turbine
design has been reported to influence burrowing owl
(Athene cunicularia) collision risk at wind-power facilities
in California (Smallwood et al. 2007).
At broad scales, we found evidence for the influence

of biological, technical, and topographic features on sage-
grouse fence collision. Relative probability of sage-grouse
collision was related to region, topographic ruggedness, and
fence length, and conditional on these factors collision
counts were influenced by distance to nearest lek. Several
previous studies also sampled fences over broad scales; how-
ever, measurement and analysis of predictor variables usually
focused on site-scale covariates (Baines and Summers 1997,
Bevanger and Brøseth 2000), limiting our understanding of
what influences collision across the landscape.
Although most studies measured covariates at the site-

scale, many studies reported spatial variability in collision
risk at regional scales (Bevanger and Brøseth 2000, Barrios
and Rodrı́guez 2004, Patten et al. 2005, Shaw et al. 2010).
Differences in relative sage-grouse population densities and
regional evidence-removal rates are plausible explanations
for observed differences in collision. Broad-scale lek counts
suggested sage-grouse densities may influence regional col-
lision risk on southern Idaho rangelands. Lek counts within
8.5 km of sampling areas in the Big Desert and Upper Snake
regions were more than double those observed in the Magic
Valley during our study (Stevens 2011). Both relative colli-
sion probability and expected collision counts were greater in
the Big Desert and Upper Snake regions than the Magic
Valley region. Regional variation of avian–infrastructure
collision as a function of population indices has been reported
for a variety of avian species, infrastructure types, and
regions (Baines and Andrew 2003, Barrios and Rodrı́guez
2004, Shaw et al. 2010). Although increased risk with re-
gional abundance is an intuitive result, large differences
in collision-evidence-removal rates were also observed be-
tween study regions (Stevens et al. 2011). Thus, observed
regional effects may have been a function of reduced evi-
dence-removal rates in the Big Desert and Upper Snake
regions relative to the Magic Valley (Stevens et al. 2011).
Moreover, regional variation may have been related to un-
measured covariates.
In addition to regional variation in risk, we found sage-

grouse collision was a function of topographic ruggedness at
our sites. Moderate increases in ruggedness resulted in strong
reductions in fence collision risk. We hypothesize increasing
topographic variation may result in higher flight altitudes,
reducing risk of colliding with fences. Direct comparisons to
topographic influences on collision reported in other studies
are difficult because of differences in measurement and scale.
Most previous studies treated topography as a categorical
variable. Bevanger (1990) categorized topography of power-
line sites, and reported tetraonid collision frequency was
greatest at sites categorized as sloping, top formations, or
depressions. Others reported geomorphic forms (e.g., coast-
lines and ridges) that affected local movement influenced

infrastructure collision (Bevanger 1994, Cooper and Day
1998); however, we are not aware of studies measuring
the influence of broad-scale topographic variation on
collision.
Similarly, we are not aware of studies measuring the

influence of infrastructure density on broad-scale collision
risk. Our results support the hypothesis that increasing
fence density on the landscape increases collision on sage-
grouse breeding areas. Both Patten et al. (2005) and
Wolfe et al. (2007) suggested landscape-scale habitat
fragmentation by infrastructure likely increased lesser prai-
rie-chicken mortality in Oklahoma relative to New Mexico;
however, they did not measure fence or power-line densities.
Moreover, most studies used fences or power-line segments
themselves as sampling units in analyses, obfuscating
effects of infrastructure density on collision (Baines and
Summers 1997, Bevanger and Brøseth 2000, Shaw et al.
2010).
Although relative collision presence was influenced by

region, topography, and fence density, collision counts
appeared to also be influenced by a sites’ proximity to nearest
sage-grouse lek. Leks are traditional congregation points and
activity centers for sage-grouse during the breeding season,
thus distance to lek effects are likely a function of spring
space use (Scott 1942, Patterson 1952, Gibson 1996).
Lekking behavior has been hypothesized to influence infra-
structure-collision risk for both birds and bats (Bevanger
1994, Baines and Summers 1997, Cryan 2008), and obser-
vations of sage-grouse colliding with fences near lekking
areas were first reported in the 1940s (Scott 1942).
Moreover, multiple studies hypothesized infrastructure in
close proximity to leks may pose a threat to lekking species
(Bevanger 1994, Baines and Andrew 2003). However, pre-
vious studies did not provide a measurable link between
infrastructure-lek proximity and tetraonid collision risk.
Observed relationships between sage-grouse collision

and broad-scale factors suggest these models may be useful
predictive tools to identify high-risk areas across the land-
scape. Bevanger (1994) suggested information on behavior,
geography and other factors be synthesized to develop
infrastructure-collision predictive models for species of con-
cern. Many previous studies were limited in scope to worst-
case-scenarios, making landscape-scale prediction difficult
(Bevanger 1998). Inherent stochasticity in collision frequen-
cy and lack of fine scale space-use data has lead some authors
to suggest collision is not predictable at broad scales (Brown
and Drewien 1995, Shaw et al. 2010). Shaw et al. (2010)
tested model-predicted collision risk for blue cranes
(Anthropoides paradiseus) in South Africa, and reported the
model was not successful at predicting high-risk sites.
However, this model was constructed using expert opinion,
not field-collected data (Shaw et al. 2010). Spatial aggrega-
tion of collision reported in this and other studies suggest
predictability at some spatial scale, and our broad-scale
models showed reasonable internally- and cross-validated
prediction success despite lack of fine-scale space-use data.
Moreover, limited predictability from previous avian-
collision studies may be a function of extrapolation across
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scales (Miller et al. 2004), because most research only mea-
sured factors at the site-scale, and did not attempt to identify
the appropriate scale for collision prediction.
Despite the relative prediction success of our broad-scale

models, several inferential limitations exist with our data, and
the consequences of collision for sage-grouse populations
remain unknown. No research has addressed the effects of
collision on demography for sage-grouse populations, and it
is unclear if collision mortality is additive or compensatory to
natural mortality. Population-level impacts of collision likely
depend on a number of factors, including the proportion of
collisions that result in mortality, cumulative numbers of
male and female fatalities, and the ability of local populations
to compensate for collision mortality. Our sampling provided
a survey of relative collision presence and abundance during
the early-mid lekking season for sage-grouse across southern
Idaho, and no data currently exist on the proportion of
collisions resulting in mortality. By sampling over broad
areas, we documented sage-grouse fence collision was rela-
tively common and widespread; however, in doing so, we
sacrificed fine-scale data on temporal dynamics of collision
over the lekking season at each site. The lek mating strategy
of sage-grouse suggests moderate levels of male mortality
during the breeding season may have little effect on popula-
tion productivity. Moreover, many sage-grouse populations
exhibit density dependent fluctuations (Garton et al. 2011),
suggesting the ability to compensate for collision mortality
may exist. However, large numbers of female sage-grouse
killed via fence collisions during the lekking season would
likely be problematic for local populations. More research is
necessary to address demographic consequences of avian–
infrastructure collision.
Additional inferential limitations are warranted with in-

terpretation of results from current statistical modeling
techniques applied to avian-collision data. We used logistic
regression modeling, which, assuming no false zeros, mod-
eled probability of collision presence at the time of sampling.
However, biological interpretation of these results is com-
plicated. Point-in-time sampling tells us little about colli-
sions that occurred more than a few weeks prior to sampling
(Santos et al. 2011, Stevens et al. 2011) or collisions that
occur later in time. Thus, true zero observations may not
remain zero observations over the entire period of biological
relevance (e.g., lekking season). Therefore, timing of sam-
pling relative to the temporal dynamics of collision is impor-
tant for meaningful interpretation of results using current
modeling techniques. Stevens et al. (2012) documented a
seasonal peak of sage-grouse fence collision early-midway
through the lekking season in southern Idaho; thus, our
results are likely representative of peak collision occurrence
for sage-grouse in our region. False-zero observations (i.e.,
failed detection) and the potential for variable detection over
space and time further complicate interpretation of results,
and interpretation should proceed with caution. Detection of
collision evidence in sagebrush steppe varies with local habi-
tat conditions (i.e., shrub height, big sagebrush vs. little
sagebrush; Stevens et al. 2011), which could have influenced
our modeling results. However, habitats were variable within

study regions, and we did not observe systematic differences
in habitat as a function of topographic ruggedness or fence
density; thus, systematic bias due to detection error was
unlikely. These interpretation issues are prevalent for both
presence–absence (i.e., logistic) and count-based (i.e.,
Poisson) modeling methods, and applying these methods
to collision counts corrected for detection or removal bias
(e.g., Bevanger 1999, Smallwood 2007, this study) does not
account for estimation error in bias corrections. Specialized
statistical techniques for modeling temporal dynamics of
avian-collision data under imperfect detection and evi-
dence-removal bias should be a research priority.
Differences in statistical methodology also make compar-

ing our modeling results across scales difficult. We used
generalized linear models for modeling collision at broad
scales, but exploratory machine learning methods for classi-
fying random and collision fence points at the site-scale. We
conducted an exploratory analysis with site-scale data be-
cause no previous research studied sage-grouse fence colli-
sion. Moreover, specific hypotheses underlying microsite
measurements used in site-scale analyses from previous tet-
raonid collision studies were often unclear, and we had little
data on how sage-grouse visualize their environment to
deduce specific hypotheses regarding site-scale attributes
of fence collisions. Differences in methodology make
cross-scale comparisons of our results difficult; however,
covariate differences and measurement techniques also
make these comparisons difficult, regardless of analytical
methodology used. For example, topographic characteristics
at the site scale (i.e., slope and aspect) are not directly
comparable with those calculated over a square km (e.g.,
TRI), nor are technical attributes of fences. However, site-
scale modeling had poor prediction success relative to broad-
scale models, suggesting broad-scale factors may influence
sage-grouse collision more than site-scale factors.
Despite inferential limitations of this research, ours is

currently the only dataset to base management decisions
regarding sage-grouse collision. Anthropogenic infrastruc-
ture such as wind-power turbines and oil and gas develop-
ments are currently expanding in many parts of the
sage-grouse range (Kuvlesky et al. 2007, Knick et al.
2011, Naugle et al. 2011). These developments bring asso-
ciated infrastructure such as roads and power lines. Sage-
grouse may avoid large point-based infrastructure such as oil
and gas wells (Doherty et al. 2008, Holloran et al. 2010);
thus, our models do not likely apply directly to other infra-
structure. However, increased infrastructure associated with
development may have cumulative effects (Kuvlesky et al.
2007, Knick et al. 2011). Moreover, sage-grouse occasionally
collide with power lines (Beck et al. 2006); thus, cumulative
effects of infrastructure on sage-grouse populations should
be addressed in future research.

MANAGEMENT IMPLICATIONS

Since no previous work systematically examined sage-grouse
fence collision across the landscape, our models could serve as
a conceptual framework for prioritizing areas for future
mitigation such as fence marking or moving. Wolfe et al.

Stevens et al. � Modeling Sage-Grouse Fence Collision 9



(2007) suggested fences within 1 km of prairie-grouse leks
be targeted for marking efforts, however, our data suggest
this may not be adequate in some areas. Our data suggest
management should start with areas of high fence densities
(e.g., >1 km of fence per square km), and fences within
approximately 2 km of leks. However, topographic rugged-
ness appeared to attenuate the influence of other variables on
fence-collision risk, with reduced collision at mean TRI
values >5 m per square km, and nearly eliminated collision
risk at mean TRI values >10 m per square km. Therefore,
the above recommendations primarily apply to areas with
relatively flat topography. Site-scale data suggested con-
structing fences using larger and more conspicuous wooden
posts and with posts spaced at intervals <4 m may also
reduce collision. However, population-level impacts of fence
collision on sage-grouse demography are unknown, and
future research should address this topic to ensure manage-
ment efforts are allocated appropriately. Moreover, future
research should attempt to replicate this work in space and
time, and independently validate our model predictions by
treating them as testable hypotheses of factors influencing
collision in other areas (Miller et al. 2004).
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Kampichler, C., R. Wieland, S. Calmé, H. Weissenberger, and S. Arriaga-
Weiss. 2010. Classification in conservation biology: a comparison of five
machine-learning methods. Ecological Informatics 5:441–450.

Knick, S. T., S. E. Hanser, R. F. Miller, D. A. Pyke, M. J. Wisdom, S. P.
Finn, E. T. Rinkes, and C. J. Henney. 2011. Ecological influence and
pathways of land use in sagebrush. Pages 203–251 in S. T. Knick and J.W.
Connelly, editors. Greater sage-grouse: ecology and conservation of a
landscape species and its habitats. Studies in Avian Biology Series,
Volume 38, University of California Press, Berkeley, USA.

Kuvlesky, W. P. Jr., L. A. Brennan, M. L. Morrison, K. K. Boydston, B. M.
Ballard, and F. C. Bryant. 2007. Wind energy development and
wildlife conservation: challenges and opportunities. Journal of Wildlife
Management 71:2487–2498.

Lambert, D. 1992. Zero-inflated Poisson regression, with an application to
defects in manufacturing. Technometrics 34:1–14.

Liaw, A., and M. Wiener. 2002. Classification and regression by
randomForest. R News 2:18–22.

Malcom, J. M. 1982. Bird collisions with a power transmission line and their
relation to botulism at a Montana wetland. Wildlife Society Bulletin
10:297–304.

Marmion, M., M. Luoto, R. K. Heikkinen, and W. Thuiller. 2009. The
performance of state-of-the-art modelling techniques depends on geo-
graphical distribution of species. Ecological Modelling 220:3512–3520.

Martin, G. R. 2011. Understanding bird collisions withman-made objects: a
sensory ecology approach. Ibis 153:239–254.

Martin, G. R., and J.M. Shaw. 2010. Bird collisions with power lines: failing
to see the way ahead? Biological Conservation 143:2695–2702.

Martin, T. G., B. A. Wintle, J. R. Rhodes, P. M. Kuhnert, S. J. Low-Choy,
A. J. Tyre, and H. P. Possingham. 2005. Zero tolerance ecology: improv-
ing ecological inference by modeling the source of zero observations.
Ecology Letters 8:1235–1246.

Miller, J. R., M. G. Turner, E. A. H. Smithwick, C. L. Dent, and E. H.
Stanley. 2004. Spatial extrapolation: the science of predicting ecological
patterns and processes. BioScience 54:310–320.

Moss, R. 2001. Second extinction of capercaillie (Tetrao urogallus) in
Scotland? Biological Conservation 101:255–257.

Moss, R., N. Picozzi, R. W. Summers, and D. Baines. 2000. Capercaillie
Tetrao urogallus in Scotland—demography of a declining population. Ibis
142:259–267.

Naugle, D. E., K. E. Doherty, B. L. Walker, M. J. Holloran, and H. E.
Copeland. 2011. Energy development and greater sage-grouse. Pages
489–503 in S. T. Knick and J. W. Connelly, editors. Greater sage-grouse:
ecology and conservation of a landscape species and its habitats. Studies in
Avian Biology Series, Volume 38, University of California Press, Berkeley,
USA.

Patten, M. A., D. H. Wolfe, E. Shochat, and S. K. Sherrod. 2005. Habitat
fragmentation, rapid evolution and population persistence. Evolutionary
Ecology Research 7:235–249.

Patterson, R. L. 1952. The sage grouse in Wyoming. Sage Books, Denver,
Colorado, USA.

R Core Development Team. 2006. R: a language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria.

Riley, S. J., S. D. DeGloria, and R. Elliot. 1999. A terrain ruggedness index
that quantifies topographic heterogeneity. Intermountain Journal of
Sciences 5:23–27.
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